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• Essential role played by intermittent and large scale structures ("blobs") in the 
cross-field energy and particle transport to the wall in the far Scrape-Off-Layer 
(SOL) 

• From many experimental studies carried out in several machines (toroidal : Tore-
Supra, W-7AS, Alcator-C, NSTX, D-IIID, … and linear machines as well  

 -  radially propagating "blobs" are responsible for  ~50% of the transport 

 - Study of statistical properties  signature of intermittency and "blobs" and  of 
self-similarity (Hurst parameter ⇒ long-range correlations, SOC models?, …) 

• Open questions: 

 - Origin and formation of the "blobs" (core plasma, relation with ELMs?, near the 
separatrix, inverse cascade process?), propagation velocity, time and size scales,  

  need for Diagnostics (probes arrays, imaging, …),  signal processing methods, 
comparison with numerical simulations, … 

Turbulence and transport in the Scrape-off-Layer of 
Tokamaks 
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Time-series analysis (probe data) 
Data in the form of time series are collected from a turbulent process ⇒  

How can we extract  information from these time series 

• Statistical Analysis → stationary stochastic processes 

• Fourier  Methods  =  projection on an orthogonal basis,  
but with infinite support  ⇒    Limitations 

 "Classical“ Methods = 

are inadequate 

Experimental data 
from tokamaks 

Intermittency, non linearity ⇒ 
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Tore-Supra (Shot #35000) 

2B Isat, 

xm = 0,0822 

σ = 0,0118 

2B Isat, 

xm = 0,072 

σ = 0,0094 

2B Isat, 

xm = 0,0551 

σ = 0,0076 

2B Isat, 

xm = 0,0144 

σ = 0,0023 
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Tore-Supra Shot #35000 

Analyzed signals: Isat_2A et Isat_2B  
for r = 15, 20, 35, 70 mm (distance to LCFS) 

I1A-I2A  I2A-I3A  I1A-I3A  

I1A-I2A  I2A-I3A  

Cross-correlations r = 15 mm 

Cross-correlations r = 70 mm 

Non Gaussian PDF 
related to 
intermittency 
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Tore-Supra Shot #35000 

2B Isat, r = 70 mm 2B Isat, r = 35 mm 2B Isat, r = 20 mm 2B Isat, r = 15 mm 

Autocorrelations and Fourier spectra  
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Tore-Supra Shot #35000 

2A Isat, r = 70 mm 2A Isat, r = 35 mm 2A Isat, r = 20 mm 2A Isat, r = 15 mm 

Autocorrelations and Fourier spectra  
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Drawbacks of Fourier methods 

Fourier transform definition: 

⇒ F (ω) complex ⇒ lnformation on time localisation contained in the phase    

          ⇒   difficult access 

• Example 1 → A musician playing either successively two ≠ notes, or                                      
 simultaneously these two notes ⇒ same amplitude spectra   
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Solution: Wavelets? 

• Short-time (or windowed) Fourier transform   

        → (DFT of sub-series)  ⇒  Pb : frequency resolution ∆ν = 1/T  
 
                                                                     the  time resolution is the same 
                                                                     at all frequencies 

 

 

• Wavelet transform = generalization of the Fourier analysis 

        → change for an other analysis  function 
        giving a  time resolution depending 
        on the frequency 
 

 
 

 ⇒  find an orthogonal basis localised in time and  frequency 
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Intermittency between two modes 

Time-frequency representation (Morlet) 

Ionization waves in a glow discharge (I = 3 mA) 

f1 = 1.05 kHz, f2 = 1.55 kHz 
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Periodic pulling 

A=1., ε =1. 
ω1 = 1.2 
"VdP1.0-1.2" 

a simple model: the forced van der Pol oscillator 

K-H instability 
Ud=50 volts 
Time series "y5a02" 
at r = 4 cm (in the 
shear layer) 

( ) ( )tAxxxx 1
2
00 cos1² ωωωε =+−+ 
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Wavelet Analysis 

• Principle of the wavelet transform:  
    replace the sine waves of the Fourier decomposition by orthogonal basis 

functions localised in time and  frequency 
 
• Aim : Decomposition of a signal into components (small waves, i.e.       

wavelets) corresponding to : 
          ≠ scales or levels (i.e., frequencies) and 
          ≠ localisations for each of these scales 
 
→ Two  different approaches : 
•  Continuous Wavelet Transform (e.g. Morlet) → time-frequency analysis 
•  Discrete Wavelet Transform → orthogonal decomposition (filtering) 
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The Continuous Wavelet Transform 

Principle :  mother-wavelet ϕ(t)  ⇒ 
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The Morlet Wavelet 
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The Discrete Wavelet Transform 

Drawbacks of the continuous wavelet transform :  redondancy, CPU time, 
admissibility conditions non completely fullfilled (Morlet) 

Solution ? Discrete Wavelets (similar to the DFT) 

• Octave scaling →   
   Tj = 2j et t0 j,k = k/ 2j 
 
 

• orthogonality 
 

with 
 
There are 2m base functions at the m level 
 
 
• reconstruction 
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Wavelet construction: Daubechies wavelet 

Φ(t) for r=2  (from Newland [1]) 
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• Haar 
                                                 

 lack of regularity  ⇒ 

 

• Daubechies wavelets 
  - must be determined by recurrence from a scaling function  Φ(t) 

    (Meyer, 1993)     

  - they are completely defined by the coefficients ck 

     2r+1 conditions must be satisfied:  
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Mallat tree (pyramid algorithm) 

from Newland [1] 

  Solutions : 
• Haar (r=1) → c0 = c1 = 1 

• Daubechies D4 (r=2) →  

• r > 3, (numerical computation) → discrete transform (computed by using the  
Mallat algorithm)  →  analysis, and  reconstruction  formula  →   synthesis 
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Practical considerations (1) 

• The Continuous Wavelet Transform (Morlet): 

FFT computation of 

Practically  f={fn} et N=2m                                                               ⇓ 

                                         ⇓ 

                                                                             

 

⇒ Oversampling of F(ω) required 
  solution = zero padding of  fn (for T=NTe → (N-1)N zeros) 
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See for example, D. Jordan et al, Rev.Sci.Instrum. 68 (1997) 1484-1494 
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Practical considerations (2) 

• Discrete Wavelet Transform:    → pyramid algorithm (no need for the W(t))  
   ½L3                               ½ H2                           ½ H1    example :           f=f(1:8) ———→ f'(1:4) ———→ f'(1:2) ———→ f'(1) 
                           ↓ ½ H3                 ↓ ½ H2                        ↓ ½ H1                       ↓  

                            a[5:8]                  a[3:4]                     a(2)                  a(1)  

Hn et Ln are matrices build directly from the ck coefficients (cf. Newland [1]) 
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Times-series and self-similarity properties 

Scale Invariance → self-similar stochastic process 

• Definition and properties:  
• Power spectrum                                 γ characteristic exponent 

• Algebraic decay of the autocorrelation function 

                                 with H  Hurst exponent, γ = 2H + 1  

                                                ⇒   x(t) et x(at)  have the same statistics  

  

• constant correlation between past and future increments at all time:  

 

• Examples:    * Gaussian white noise  →  (γ = 0)   H = - 1/2 
                              *  Fractional Brownian motion  (fBm) 1< γ<3  →  0 <H < 1 
                               Random walk (H = 0.5), 1/f  processes,   S.O.C.   
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R/S analysis and the Hurst exponent (1) 

The rescaled ranged statistics (R/S) method was proposed to evaluate the Hurst 
exponent (H ) to determine long time dependencies in various signals.  

From a time series X of length N, sub-blocks of length n : X = {Xt: t = 1,2,…n}  

are build to compute (with                                                     ): 

)(
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X = increments (fGn) of self-affine data (e.g., fractional Brownian motion)  
                      R/S ~  c nH  
 
For uncorrelated data                   H = 0.5    ( X  =  time-series of a white noise)      
                                             If     H < 0.5                    antipersistence 
                                             If     H > 0.5                      persistence 
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R/S analysis and the Hurst exponent (2) 

R/S 

H=0.35 
γ=1.73 

Example: the Xi are the 
increments (time 
derivative) of a 
fractional Brownian 
motion (fBm)  

      with H = 0.35 

γ = 2H + 1 

   Drawback of the method: H must be in the range [0-1]  ⇒ γ = 2H + 1 in the range:  
    [1, 3]  (R/S analysis on increments) or  [-1,+1]  (R/S analysis on signal) 
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Fractals and Wavelets  

 
• Discrete wavelet transform 
       octave scaling →   Tm = 2m-1   ⇒    with τj = 2j-1 

log(varxn
m) 
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Wavelets are self-similar by nature 
 Mother-wavelet ϕ(t)  ⇒                            translation + dilatation 
 

• The wavelet variance is a very useful alternative to spectral density function,  
  and R/S analysis 
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Wavelet variance (DWT, Daubechies D20) 

Brownian motion (H = 0.5) 

H = 0.5 

Variance of wavelet coefficients 
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SOL turbulence (Tore-Supra data) 

Tore-
Supra: 
 shot  
 #22253 

Two distinct behaviors can be seen on the spectrum:  
• before breakpoint  (BF)  signal ~  fGn 
• After breakpoint (HF)    signal ~ fBm 

H1 = 0.57 

H2 = 0.57 

  Signal: H1 =  0.57              Increments H2 = 0.57 

PDF 

Question :  
Why such a relationship ? 

γ3 = 2.15 

γ1 = 0.15 

γ2 = 1.4 
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Tore-Supra (Shot #35000) 

2B Isat, 

xm = 0,0822 

σ = 0,0118 

2B Isat, 

xm = 0,072 

σ = 0,0094 

2B Isat, 

xm = 0,0551 

σ = 0,0076 

2B Isat, 

xm = 0,0144 

σ = 0,0023 

γ=2H+1=1.50 

γ=1.74 

γ=1.78 

γ=1.84 
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Continuous wavelets: Time-frequency analysis 

Pivoine data 
(from A. Lazurenko) 

Time-frequency representation obtained with Morlet wavelets 

Fourier spectrum 

Drawback → cpu time demanding (because high level of redundancy) 
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Discrete wavelets: Analysis and reconstruction 

Analysis 

Synthesis 

Daubechies wavelets 

Efficient 
algorithmn, 
But: 
- physical 
meaning of 
the filtering? 
- not well 
suited to time 
frequency 
analysis 
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The Hilbert-Huang Transform 
 or Empirical Mode Decomposition 

•  Decomposition  of a non stationary time-series into a finite sum of orthogonal 
eigenmodes, or Intrinsic Mode Functions (IMF). 

•  Self adaptive approach in which the eigenmodes are derived from the specific 
temporal behaviour of the signal. 

•  Subsequently, the Hilbert Transform can be used to compute the instantaneous 
frequency and a time-frequency representation of each mode as well as a global 
marginal Hilbert energy spectrum. 

N. E. Huang et al., The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and 
Non-Stationary Time Series Analysis, Proc. R. Soc. London, Ser. A, 454, pp. 903-995 (1998).  

T. Schlurmann, Spectral Analysis of Nonlinear Water Waves based on the Hilbert-Huang 
transformation, Transactions of the ASME Vol.124 (2002) 22. 

J. Terradas et al, The Astrophys. Journal 614 (2004) 435. 
P. Flandrin, G. Rilling, P. Gonçalves, Empirical Mode Decomposition as a Filter Bank, 
 IEEE Sig. Proc. Lett., Vol.11, N°2, pp. 112-114 (2004). 
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Hilbert Transform and instantaneous frequency 
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Hilbert transform of a data series x(t) is defined by:  

But in most cases the instantaneous frequency 
                              has no physical meaning 

Example 

By substituting    we can define 
z(t) as the analytical signal of x(t) 

dt
tdt )()( θω =

Impossible d’afficher l’image.

⇒ Empirical Mode Decomposition 
set of IMF : (1) equal number of extrema 
 and zero crossings; (2)  mean value of the  
 minima and maxima envelopes = 0 

from Huang et al 
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IMF = Intrinsic Mode Functions  

)()()(
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trtimftX
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j
nj∑
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+=

1.  Initialize : r0(t) = X(t), j=1 
2.  Extract the j-th IMF: 
 a) Initialize h0(t) = rj(t), k=1 
 b) Locate local maxima and minima of hk-1(t) 
 c) Cubic spline interpolation to define upper and lower 
              envelope of hk-1(t) 
 d) Calculate mean mk-1(t) from upper and lower enve- 
              lope of  hk-1(t) 
 e) Define hk(t) = hk-1(t) - mk-1(t) 
 f) If stopping criteria are satisfied then imfj(t) = hk(t) 
             else go to 2(b) with k=k+1 
3.  Define  rj(t) = rj-1(t) - imfj(t)  
4.  If  rj(t)  still has at least two extrema then go to  2(a) with 

j=j+1, else the EMD  is finished 
5.  rj(t) is the residue of x(t) 

The Empirical Mode Decomposition (sifting process) 

⇒ 
A typical 
IMF 

from Huang et al 
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Analysis and Reconstruction (Plasma thruster data) 

Analysis Synthesis 
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Completeness and Orthogonality 

Example (from Huang et al) 

The orthogonality is satisfied in practical sense, 
 but it is not guaranteed theoretically 

The completeness is established 
 both theoretically and numerically  

IO = overall index of orthogonality 

for this example IO = 0.0067 

or for two IMF: 
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Degree of stationarity 

The degree of stationarity DS is defined as: 

with       mean marginal spectrum  

and the degree of statistic stationarity DSS 
can be is defined as: 

If the Hilbert spectrum depends on time, the index will not be zero,  
then the Fourier spectrum will cease to make physical sense.  
The higher the index value, the more non-stationary is the process. 
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Marginal Hilbert spectrum vs Fourier spectrum 

Because of the strong 
nonlinearity of HF 
oscillations the Fourier 
spectrum exhibits many 
peaks  
All these peaks do not 
correspond to actual modes 

A peak in the marginal Hilbert spectrum 
corresponds to a whole oscillation around zero 
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Application to experimental time-series (Plasma Thruster) 

IMF 9 

IMF 1-4 

Marginal Hilbert Spectrum 

Analyzed Signal 

J. Kurzyna et al.,  
submitted to Phys. of Plasmas  
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Comparison with wavelet time-frequency analysis 

Morlet → freq. = 375/scale ⇒ 33 ↔ 11.4 MHz 
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 The Hilbert-Huang Transform method: 
• Has proven to be a promising and attractive method to analyze non 

stationary and nonlinear time-series because of: 
 - a very efficient ability  in filtering different physical phenomena 
 - accurate time-frequency representation  
 - moderate cpu time consumption and ability to analyse long time 

series 
• Some improvements would be useful, e.g., Hilbert spectra 

representation 

Conclusions and Perspectives 
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Linear spectral analysis tools 

The classical Fourier analysis tools are redefined in terms of wavelets: 
 
    in order to obtain statistical stability, the appropriate combinations 
    of wavelet coefficients are integrated over a small finite time interval 
      
         f (t ) is digitally sampled on [0, N Ts ] 
    
• Wavelet spectra and coherence 
 
 
• normalized delayed wavelet cross coherence 
                 
              →  estimate of   
      the statistical   
      noise level  
        
 
      where                                           is the wavelet auto-power spectrum 
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Joint wavelet phase-frequency spectra 

  
• The Joint wavelet phase-frequency spectrum S (φ, ω) is obtained by  
   calculating the quantity: 
 
   for a number of values of a and τ, with fixed ∆ τ  
 
   ω = 2π/a  and φ phase of c   → plot in the (φ, ω)-plane 
 
 
     ⇒   insight into the frequency-dependent phase relations that may exist 
           between f and g  (usually two spatially separated measurements of the same quantity) 
 
       
moreover (if homogeneous turbulence) 
                                                    →  related to the dispersion relation ω(k)  
                                                          for the process driving the turbulence 

τ)τ,(τ),( ∆+= ∗ aWaWc gf
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Non linear spectral analysis tools 

Non linearity requires proper spectral analysis tools : 
 The Fourier method is based on the third-order spectrum 
                                      where   ω  = ω1 + ω2  and <.> = ensemble average 
 
• Wavelet cross bispectrum  
 
• Wavelet cross bicoherence (normalized squared cross bispectrum) 
        
 
 
 
  
• Wavelet auto bispectrum and auto bicoherence  
  and  
 
•The bicoherence is a measure of the amount of phase coupling that occurs in a signal 
or between two signals. Advantage of wavelet bicoherence → ability to detect temporal 
variations in phase coupling (intermittent behaviour) 
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Bicoherence as a Fourier tool 

From Van Milligen, Wavelets in Physics, edited by J. C. Van Den Berg, 
(Cambridge University Press, 1999) 
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Example: coupled van der Pol oscillators (1) 
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Chaotic state: 
 ε1 = 1.0   α1 = 0.5 
 ε2 = 1.0   α2 = 1.75 

Periodic state: 
 ε1 = 1.0   α1 = 0.49 
 ε2 = 1.0   α2 = -1.75 
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Example: coupled van der Pol oscillators (2) 

Summed bicoherence 

Fourier Bicoherence 

Chaotic state: Periodic state: 
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Example: coupled van der Pol oscillators (3) 

From van Milligen 

Periodic state:  ε1 = 1.0  ε2 = 1.0  α1 = 0.5  α2 = -1.75 

The bicoherence allows 
the determination 
 of the driving 
frequency. 
  i.e., peak at f = 0.34  
         in the spectrum 

⇐ Average phase relation between the two coordinates 
of one oscillator at every frequency ⇒ low-dimensional 
attractor 
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Bispectrum of a spatial series S(x) : 
 
 
Ws(a,X)= wavelet transform of S(x). 
a, a1, a2 = wavelet scales such that 1/a = 1/a1 + 1/a2 

 
 
BW is a measure of the degree of nonlinear coupling between 3 waves 
satisfying  the resonance condition : 

     ω1 + ω2  = ω3 
      k1 + k2   = k3 
     Φ1 + Φ2  = Φ3 + const 

Bicoherence analysis 

n=64, Fech =1.25 MHz  

F. Brochard et al., Phys. Plasmas 13, 122305 (2006). 
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Normalization of the bispectrum => Autobicoherence (bicoherence) 
 
 
    0 ≤ [bW (a1, a2) ]2 ≤ 1 
    
 
        

Bicoherence  

  
Summed 
Bicoherence 

  Auto-
Bicoherence 
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Summed Bicoherence    
     
         allows to determine the coupling direction 

Total bicoherence 
     
     gives an indication on the amount of nonlinear coupling 
 

Staistical noise: 
          

        =>  depends on the scale 1/k 
 

Bicoherence  
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Weakly turbulent state (drift waves) in the Vineta device 
 

 Density fluctuations  Time-series and PDF 

Results: dynamical analysis  

F. Brochard et al., Phys. Plasmas 13, 122305 (2006). 
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Results : dynamical analysis  

More details are seen in the k spectrum than in the frequency 
spectrum (wavelet spectra). 
 

       Time/frequency spectrum  Time/wave number spectrum 
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Results : dynamical analysis  

The temporal evolution of the k total bicoherence shows bursts on small 
time scale (too small to be detected from a frequency analysis (~ T/10). 

Statistical noise 
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Results : dynamical analysis 

Zooming a bicoherence burst: comparison spectrum/summed bicoherence 
=> a m = 3 mode is created through mode coupling. 
 
 
 
 
 
 
 
 
 
   F. Brochard et al., Phys. Plasmas 13, 122305 (2006) 
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Experimental Setup: the MIRABELLE device 

• Argon plasma 
• B = 0 – 130 mT 
• P ~ 0.5-5 E-4 torrs 

• Te ~ 1 – 3 eV , Ti ~ 0.02 eV 
• ne ~ 1015 – 1016 m-3 

• ρS ~ 0.5 – 3 cm 

Plasma typical parameters: 

8 plates 
Exciter 
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Spatiotemporal control of a weak turbulent state  

The exciter plates are localised 
outside of the plasma ⇒ no 
limiter effect. 

In Mirabelle, it is possible to select 
between "flute" modes (Kelvin-Helmholtz, 
Rayleigh-Taylor) at low field, and drift 
waves at high magnetic field. 

F. Brochard et al., Phys. Plasmas 12, 
062104 (2005). 
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Spatiotemporal control of a weak turbulent state 

Example 1 : forcing of a m=1 Kelvin-Helmholtz mode 

Filtering out the  conter-
rotation by using a 1st 
order band-pass filter 

A m=1 mode at Fex=4kHz is applied to a ~3 à 7 kHz 
irregular mode, for two rotation directions 
(amplitude 2V) 
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Spatiotemporal control of a weak turbulent state 

 Spatiotemporal effect 
 the m=3 mode is not totally suppressed. 
 k//=0 before and after control: same kind of 
mode. 
 in the counter-rotation case, the applied 
spatiotemporal structure is simply 
superimposed. No coupling. 

 

 
 Bicoherence analysis: coupling between Fex 
and the instability only if co-rotation. 

Bicoherence plot 
demonstrating the 
coupling between the 
forcing mode and plasma 
eigenmodes F. Brochard et al., Phys. Plasmas 13, 

052509 (2006). 
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Spatiotemporal control of a weak turbulent state 

Ex.2 : synchronisation of a m=2 mode (Kelvin-Helmholtz) 

Wavelet analysis showing 
the transition to the 
synchronized state 

Forcing of a m=2 at Fex = 7kHz on a m~3 at 7kHz 
(amplitude 1.2V) 
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Driving a Turbulent state  

The excitor can also be used  to drive more turbulent states, through nonlinear 
wave-wave coupling leading to spectral enlargment (Ruelle-Takens scenario). 

Generation of turbulence: Drift waves (left) and Kelvin-Helmholtz (right). The 
turbulence level depends on the amplitude of the applied signal on the exciter. 
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Fast camera data (test) 

Raw data taken in the 
Mirabelle device 
Drift wave, regular mode 

After 
substracting 
mean value 
at each pixel 

After 
wavelet 
processing 
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• Several methods are available 
• The choice of the best method depends on the kind of information we 

want to extract from the data  
• Fourier methods have many drawbacks when applied to non 

stationnary nonlinear signals 
• Wavelets based tools are very useful, and especially to measure self-

similiarity properties 
• Among the last introduced methods the Hilbert-Huang transform has 

proven to be very efficient in filtering 

Conclusions and Perspectives 
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